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Abstract – An overview of the magnetostatic field synthesis method, Variable Field Generation (VFG), and 
results from applying it to a test case to design magneto-plasma-aerodynamic (MPAD) devices to observe 
algorithm performance in the MATLAB programming environment are presented in this paper. The algorithm 
applied to this test case included integrating the Magnetostatic module of the finite element software package, 
Maxwell 3D by Ansoft, for design verification and optimization. 
 
1. INTRODUCTION   
Analysis of various hypersonic system concepts for future advanced air vehicles indicates that the benefits of 
magnetic field systems are significant. This vehicle will produce an ionized or plasma environment around the 
aircraft using on-board e-beam generators (combination of laser and microwave energy). In addition magnetic 
devices will be on-board to provide the needed magnetic field to induce the desired Lorentz force. The effect of 
this force can manipulate the plasma around a given surface to improve flight efficiency, maneuverability, and 
enable advanced flight control. An essential task in the design of this aircraft’s MPAD system is that once the 
appropriate field patterns have been determined, the derivation of the proper magnetic configurations needed on 
the aircraft must be undergone. Therefore, there exists a need to provide a magnetic design solution or set of 
solutions for a MPAD system that will aid in hypersonic and trans-atmospheric travel of future air vehicles. The 
need for uniform field patterns over large surfaces and/or the ability to quickly alter the field pattern requires 
unique and inventive magnetic designs that may not have been ever created. Trial and error experimentation 
using various electromagnet or permanent magnet designs would be extremely inefficient and, therefore, 
alternative design methods must be used. Finding solutions of design problems like that can be attempted using 
different mathematical and engineering techniques. Many of these techniques are limited to specific problems 
and rely on some form of simplification or symmetry in solving familiar problems in engineering or physics. The 
distinctiveness of this research is an implementation of these techniques in a general design methodology to 
solve for arbitrary field configurations, instead of relying strictly on intuition or common design practices to 
iteratively conceive, evaluate, and correct designs. This approach is to reverse engineer the design, based on the 
desired fields to be produced. An inverse scheme that is versatile and autonomous in its application to synthesize 
MPAD systems derived from magnetic field requirements would aid the designer in producing an optimal 
design.  

Therefore, in order to provide the ability to satisfy unique magnetic field pattern requirements, field 
synthesis methods have been employed to inversely determine the necessary magnetic source configurations. 
These methods require a physical model, mathematical model, a means to evaluate the state of this mathematical 
model, and a method to solve the system of equations produced by the previous processes. Based on these 
requirements, the method of VFG has been developed. This method provides field synthesis with the niche 
ability of creating a system that produces an alterable magnetostatic field pattern. This capability is promising for 
future hypersonic aerospace technologies. Ultimately, the algorithm inversely determines the type, geometry, 
orientation, configuration, and other physical properties of electromagnetic sources that will produce a desired 
magnetic field, with the specific capability to generate a design solution that is able to fulfill multiple field 
pattern requirements. The performance goals of this algorithm were that it is versatile enough to facilitate design 
solutions for a wide-range of field patterns, yet autonomous enough to promote ease of use by non-specialist in 
inverse methods. 

This paper provides an overview of the developed algorithm, discussing the methods employed, and outlines 
the process of employing this algorithm to solve the inverse problem of synthesizing a magnetostatic field 
pattern suitable for MPAD applications. 
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2. VARIABLE FIELD GENERATION (VFG) 

 
         (a)   (b)   (c)    (d) 
 

Figure 1: Illustration of VFG globe’s variable field vector. (a) VFG glove serves as model for unknown 
magnetic source. (b) – (d) Current in each loop generates field in one of the three spatial directions. 

First introduced in [2], VFG is a source-modeling algorithm that defines any region of unknown magnetic 
sources as a system of variable sources. This source is characterized by three orthogonal current loops centered 
within each other, see Figure 1. This small “globe” has the ability to direct its dipole moments in any direction 
with the manipulation of each loops individual current. Each loop’s field is in one of the Cartesian directions 
(either x, y, or z). Therefore, the resulting field vector of the source depends on each vector’s magnitude. The 
result of this system is that the inverse problem of synthesizing a desired field pattern utilizes an assumed model 
composed only of current loops. The superposition of these current loops represents variably directed dipole 
fields as a basis for producing alterable field patterns for MPAD applications. Consequently, compensation 
magnets used on naval helicopters employ the same principle. As seen in Figure 2(a), coils are energized to 
cancel out magnetic noise of the aircraft. The use of such coils comes from the ability to control the production 
of dipole fields in all three orthogonal directions. In the naval helicopter application, the required energizing 
currents are determined by iterative field measurement and correction. However, the VFG method inversely 
computes the required energizing currents for a matrix of these coils, to produce desired field patterns. Using the 
physical model of a set of current loops allows for the use of a fully parameterized model for the creation of a 
design solution. Because this fully parameterized model consists of a variable source like that of other source 
searching models, the range of synthesis solutions for various magnetic field distributions is increased beyond 
that of traditional synthesis methods that utilize less “a priori” information. However, unlike other source-
modeling methods, this variable source will not be converted to an equivalent current distribution or other 
conventional magnetic source. Doing so would forfeit the innate ability to generate a wide range of fields. 
Instead the inverse solution of the source excitations can be constructed and implemented straightforwardly into 
a matrix of sources as shown in Figure 2(b). The result is the ability to generate multiple field patterns from a 
single system, conceptually a variable magnetic field generator. 

The original implementation of the concept of using orthogonal loops of current to variably orientate fields 
utilized an analytical expression. A closed solution of the magnetic flux density of a current carrying loop has 

 
       (a)             (b) 

 
Figure 2: VFG source model (a) compensation coils for canceling magnetic noise, and (b) proposed matrix of 

VFG sources for field generator. 
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 been derived, see (1) - (3), using the magnetic vector potential form of the Biot-Savart law. As described in [3], 
these equations provide the magnetic flux density at any point given by (x, y, z), where r is the radial distance 
from the axis of a circular loop, carrying current I and of radius a, namely 
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K(k) is the complete elliptic integral function of the 1st kind of modulus k and E(k) is the complete elliptic 
integral function of the 2nd kind of modulus k. The permeability of free space is µo. The function f reassigns the 
Cartesian coordinates (x, y, z) to the local coordinate system (η, ψ, ς) dependent on the plane in which the loop 
lies. The result of this function is such that η is the Cartesian coordinate that is orthogonal to the plane of the 
loop.  The coordinates ψ and ς are the Cartesian coordinates of the plane in which the loop lies, assigned so that 
the right-hand rule, η = ψ  ς, is satisfied. Figure 3 illustrates the geometry specified by (1) to (3) for a single 
loop. However, the algorithm models a region of unknown magnetic sources as a matrix of the m number of 
“globe” sources. The system of equations defining this matrix for a field measured at n points is assembled from 
(1) - (3). They form the vector field at the i-th measuring point (x

×

i, yi, zi) in space due to a current-carrying loop 
lying in any Cartesian plane as 
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where the function g reverses the mapping of f, transforming the flux densities in the local coordinate system to a 
3 by 1 Cartesian vector in the reference coordinate system. 

To build the governing system matrices, the field matrix of the k-th globe in the system must be formed 
using (4). The contribution of each of the three current loops designated Φ, Ω, and Θ that comprise one globe 
must be accounted for, as follows:  
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and each globe in the matrix becomes a column vector in the total VFG system matrix,  
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The summation along the columns of Bsys will result in the total magnetic flux density at all measured points. 
Once the system matrix in (6) has been assembled, the variables must be extracted. Advantageously, the only 
unknown variables of (1) – (3) are the loop currents and radius. Therefore, only the radii and currents of each 
globe must be solved. For cases in which the radius are known parameters, extracting the current, I, results in the 
following linear algebra equation for the fields at every measurement point: 
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where C is the coefficient matrix representing the geometrical information of the system of VFG sources. Since 
the currents are the unknown variables, C is directly constructed using (1) – (6), except that the current I is 
extracted from (1) – (3). The result is the linear relationship between the total field distribution Btotal and the 
current of each loop, I, based on the specified radius and positioning of the source, as expressed in (7).   

An alternative to the original system of equations of the infinitely thin conductor source model is that of 
finite radius conductors. Consequently, there is no analytical mathematical model to provide the complete field 
distribution of a finite radius conductor loop, only Maxwell’s magnetostatic equations. Therefore, the Ansoft 
developed finite element analysis (FEA) software, Maxwell 3D, was utilized to evaluate the system. To remain 
consistent with the objectives of providing an autonomous and versatile algorithm, the complete automation of 
invoking the software, creating the project, defining the geometry, characterizing the model, setting the software 
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Figure 3: Geometry for source loop used in mathematical model of infinitely thin-wired physical model. 
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options, solving the problem, and extracting the field results was accomplished to enable the same functionality 
of the analytical model. The challenge here was that Maxwell 3D is not ideally constructed for such automation 
beyond the basic macros for repeatable processes or batch processing of pre-defined cases.  Figure 4 illustrates 
the complex use of MATALB m-files, Maxwell 3D commands from the DOS prompt, and Maxwell 3D macros 
to integrate FEA into the algorithm code to evaluate the field production of the VFG matrix composed of finite 
radius conductor sources. The final result of this integration effort is that the design variables of the system are 
utilized to construct a three-dimensional CAD-like model of each of the three loops in a single source. This 
model is then solved using the finite element method and the resulting fields for each current loop are returned to 
the algorithm as the field solution, Bsys. Bsys is then translated from the local coordinate system of each source’s 
position within the matrix system to the global coordinate system of the problem to provide Btotal. The result is 
the same relationship expressed in (7). To simplify the extraction of I as an unknown, the field solutions are 
computed at a current excitation of 1 Amp; allowing Btotal to be equivalent to the coefficient matrix, C. 

The use of conductors with cross sectional area results in each loop of the source now having a different 
radius as opposed to the infinitely thin loop model which allowed each loop to have the same radius. Therefore 
the following parameter names will be used: 

 
• VFG matrix dimensions is the m× n× p number of sources used to compose a matrix of VFG 

sources, 
• VFG loop order is the ordering of which planar loop is the innermost, outermost, or middle 

inscribed loop of a VFG source, 
• conductor model type determines whether the source modeled in Maxwell 3D is made from copper 

or a perfect conductor (to represent superconducting material), 
• VFG source radius is the radius of the outermost loop of a VFG source, and 
• conductor radius is the radius of the conductors used in each of the three loops of a VFG source 

(for the infinitely thin models this variable represents the spacing between each loop). 
Whether  the analytical eqns of (1) – (3) or Maxwell 3D FEA are used within the algorithm, the coeffecient 
matrix, C, containing the geometrical information of the system of sources can be computed by specifying the 
parameters listed above.  

Applying VFG to solve any inverse magnetostatic problem requires the input of the desired flux density 
vectors at each point in space along with the volume of space reserved for the magnetic system. Depending on 
how many parameters are set as variables by the user, the algorithm solves the field synthesis problem by 
determining the system variables of C and the system excitation of I to provide a resultant field distribution Btotal 
equivalent to the field distribution specified. This process requires a solver to be employed to inversely solve (7). 
Ordinarily, an appropriate optimization routine would suffice. However, magnetic field problems inherently 
contain equations of the Fredholm integral type, which are ill-conditioned. The same holds true for the equations 
computing the field production anywhere in space of a current carrying loop, which in its simplified and closed 
form, (1) – (3), contains elliptic integrals. Therefore, regularization methods are usually employed to overcome 
the obstacles in inverting ill-conditioned systems. However, because of the many parameters that can be 
variables, the solution process has been refined, as the overall algorithm has been developed, to its current state. 
Foremost, selecting any system parameter as an unknown variable requires a nonlinear solver to find the solution 
of (7). Due to computational speed and resource constraints, the first decision was to define a linear problem 
during the process as much as possible. Therefore, the approach is to continually shrink the domain of possible 
design variables that will provide the best solution. The result is a process that includes three separate solution 
phases. Each phase identifies a set of parameters that provides the best performance using the most appropriate 
solver to optimize computational time. The results of a comparative study to determine the most efficient solver 
to apply to the system of eqns of (1) – (3) for various problems were presented in a previous paper, [4]. The use 
of optimization routines, such as the nonlinear least square method using sub-space trust regions was more 
accurate then using regularization techniques. However, for test cases within this procedure, regularization 
methods are comparable, such as the least squares conjugate gradient method with L-curve regularization. This is 
because the amount of current required can be minimized. If a conventional optimization routine is applied, the 
current demand can drastically increase due to the ill-posed nature of the inverse problem. To decrease the 
instability involved in finding a solution, the regularization technique is applied to find more stable solutions. 
This improves the feasibility of the solution. In addition, it is faster, when applied to linear problems. However, 
minimal error is still imperative. Therefore, the optimization methods are applied as well for comparison. The 
following section defines the test case used to illustrate the procedures of this solution process.  
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3. THE MPAD TEST CASE 
The motivating test case for the development of VFG is the research of next generation aircraft concepts that 
utilize the interaction of magnetostatic fields and charged particle flows for heat and drag reduction. The Lorentz 
force of an appropriately generated field can steer the flow of charged air particles away from the surface of the 
aircraft. The Boeing Company and other interested research and development institutions have considered that 
this MPAD concept could provide magnetic thermal protection to replace or simplify the complex heat 
protection materials envisioned for a next generation Shuttle replacement or a high altitude, hypersonic aircraft 
or other applications. The goal is to reduce heat transfer on a flat plate in a high-speed airflow environment. This 
plate represents the aircraft outer skin panels of an inlet ramp or nose section. Specific to a design problem, the 
panel is 1.22 meters by 1.22 meters. The problem consists of two separate test cases. The first is to produce a 
uniform magnetic field of 0.5 Tesla normal to the surface of the panel at a distance of 50.8 millimeters from the 
surface; this is the Normal Field case. The second case is identical to the first with the exception that the uniform 
field’s orientation should be parallel to the surface, the Parallel Field case. The field error for each case must not 
exceed 10%. A study was previously conducted to investigate the feasibility of several conventional designs for 
solving this problem. These designs included a parallel wire conductor array, Halbach array, and other 
conceptual designs. The designs from this study were able to produce parallel field orientation, however, not 
without some major disadvantages. Consequently, the identification of the magnetic systems required must be 
completed to feasibly implement this new magneto-plasma-aerodynamic technology. An added challenge is to 
devise a single system capable of producing this field pattern oriented parallel to the panel and normal to the 
panel without altering the physical structure. Operating this system would be advantageous to requiring two 
systems, one for each field pattern orientation. Furthermore, this ability to dynamically change the field pattern 
during operation could be used to control the aerodynamic forces of lift and drag applied to the aircraft in order 
to provide magnetic field flight control for very revolutionary research and development endeavors. The VFG 
algorithm is specifically suited to conceive such a system and was employed. The following is an outline of the 
process the algorithm uses to solve the MPAD test case that consists of two cases, the Normal and Parallel Field.  

Both the Normal and Parallel Field cases provide the desired field vectors at specific locations relative to the 
unknown magnetic system. By utilizing the area allocated for the magnetic system as specified, the respective 
VFG source radius can be determined for a specific set of VFG matrix dimensions. Particular to the square 
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geometry of this test case, the matrix would have to be of dimension m× m× n in a Cartesian space. Therefore, 
only two values would have to be permutated, m and n, and the resulting VFG source radius, in meters, can be 
computed based on the number of sources, forcing the overall size of the magnet structure to remain within the 
boundaries of a 1.22 by 1.22 meter surface area. Technically, the domain bounds of the matrix dimensions m and 
n are optional. However, it is practical that there would be physical limitations on the size of the VFG sources. 
Specifically, a minimum radius of 0.060 meters was selected. This equates to approximately a maximum limit of 
10 on m. Arbitrarily, n was restricted from 1 to 2. This was reasonable since the application would benefit from 
the minimum depth of the magnetic source for installation. Therefore, for the first design phase, the set of VFG 
matrix dimensions to be iteratively swept through would be a permutations of m = {1, 2, …, 10} and n = {1, 2}, 
thus limiting the VFG source radius to range from 0.6096 to 0.061 meters. Because the first phase is focused 
only on the number of sources, the conductor model type used will be the infinitely thin conductor loop model. 
This model utilizes the analytical equations for a one-dimensional current loop and is much faster than 
employing the Maxwell 3D integration process.  

Once the VFG algorithm is executed to derive the given set of design solutions, the results are examined to 
determine which options provided the best solution. This examination identified the optimal solution to be a 
matrix of 10 by 10 by 2 “globes” or sources, which equates to a loop radius of 0.061 meters. This result will be 
used to narrow the searched solution space for the next phase of the design procedure, which will be conducted 
to vary other design variables. The selection process that derived this optimal configuration is automated within 
the algorithm, requiring only a set of specified criteria and tolerances. These criteria are the field error of 
measurements that have a non-zero desired specification and the field error of measurements that are specified to 
be zero. Additionally a secondary criterion for designs that satisfy the error criteria is that the total current 
demand be minimized. Therefore, after solving both the Normal and Parallel Field cases selected for this MPAD 
test case, the percent error of the desired flux density components are measured and compared, depending on the 
number of sources and the solver utilized. This can be found in Figure 5(a). Those systems that satisfy the 
criteria of less than 10% maximum non-zero flux density error and a maximum error of less than 0.025 Tesla 
(%5 of maximum specified field) for specified zero flux densities lie within the acceptance region. It is important 
to note that this unusual mapping of the error is useful for quick visual inspection of where the designs lie 
relative to one another and the desired performance level. The ultimate goal of using such a plot is to identify 
acceptable designs based on the zero and non-zero specified field error, simultaneously. These acceptable 
designs are then compared to determine the optimal system based on the total demand in current and the 
flexibility of the system to satisfy all test cases, as seen in Figure 5(b). This means that no matter what the 
performance level, a design must be acceptable for both test cases, Normal and Parallel. 
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(a) 

 

 
(b) 

 
Figure 5: Finding optimal VFG solution. (a) Field error results for VFG solutions. Those satisfying desired 

criteria lie within acceptance region. (b) Current demands of acceptable solutions from Figure 5(a) are used to 
determine optimal solution. 
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Now that the matrix dimensions have been determined, the next design phase is to determine the conductor 
radius and VFG loop order. The nonlinear solver was applied to the design case selected from the first design 
phase. Fortunately, there are only six possible permutations of the loop order. Therefore the algorithm is 
executed again six times for each case using a different VFG loop order and solving for the conductor radius and 
excitation current using a nonlinear solver. For the MPAD design problem, a combination solver is applied. This 
combination solver utilizes an outer optimization of the conductor radius using nonlinear least squares method 
that relies on linear least squares with L-curve regularization of the loop currents as the inner function 
evaluation. This method is faster than attempting to solve for both the conductor radius and loop currents 
simultaneously. Using the same process of minimizing field errors and limiting current demand, the optimal 
conductor radius is 9.993 millimeters and the VFG loop order is 132 - meaning that the outermost loop of the 
source lies in the yz plane; the middle, in the xy; and the innermost, in the xz. Although all of the required design 
variables have been determined, it does not supply a sufficient design solution. Due to the error associated with 
the infinitely thin wire model of the source that is being utilized for the sake of speed, the solution of excitation 
currents cannot be trusted. This is demonstrated as part of the algorithm since Maxwell 3D is automated to 
provide verification of field production after the second phase field synthesis. The design parameters of the 
infinitely thin wire model are utilized to construct an equivalent 3D model in Maxwell. The conductors now 
have a cross sectional area and the radius of that area is specified by the conductor radius. This test is executed 
for conductor materials of copper and a perfect conductor. The field errors of the Maxwell models versus those 
of the field specifications of the Parallel Field case are given in Figure 6 for the copper conductor. The Normal 
Field case is not displayed because the results are practically identical. Consistent with the Normal Field case, 
the perfect conductor has a larger variation then the copper conductor does. The amount of error associated with 
this comparison substantiates that integrating Maxwell 3D into the algorithm to evaluate the field distribution is 
essential to correct for the field error between the different model solutions. This will remove the discrepancy 
seen in Figure 6. However, the purpose of this design phase was to determine the conductor radius and VFG 
loop order. From previous experimentation, it has been shown that the fields of the analytical and finite element 
models are of the same magnitude when using the same conductor radius, [1]. 

Now that all of the design variables have been determined, the third and final phase of this process is to 
apply a linear solver to determine the final excitation currents using the Maxwell 3D model on each case and for 
each conductor model type, copper and perfect conductor. Using the automation scheme introduced earlier, the 
analytical mathematical model and its evaluation are replaced by the finite element analysis. The resulting field 
errors for both test cases are negligible, less than 10-12 Tesla. The result is the design of Figure 7 which, when 
excited according to the VFG solutions, can produce either the Normal or Parallel field patterns specified for 
magneto-plasma-aerodynamics. 

 
4. CONCLUSIONS 
Variable Field Generation uses field synthesis methods to inversely determine the excitation of specific magnetic 
sources for production of desired magnetic field patterns. To accomplish this objective, VFG adapts a current 
loop source-searching algorithm devised for non-evasive reconstruction of current distributions and adopts a 
magnetic source model similar to magnetic noise cancellation devices for helicopter compasses. The integration 
of such disparate concepts provides a unique solution to this specific application in that it also offers the ability 
to dynamically alter the magnetic field pattern produced by a designed system. However, this algorithm is not 
the only solution to the synthesis of magnetic designs. There are many other inverse problem solution methods, 
but VFG was developed with the distinctive purpose of facilitating the use of MPAD for flight control, which 
requires variable field patterns. As enabling technologies, such as superconductor performance and magnet 
infrastructure, advance, field synthesis tools such as this will do well to inspire new and unique magnetic designs 
and applications.  
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Figure 6: Field error of Parallel Field case using thin wire model results for finite radius copper model. 
 
 

 
 

Figure 7: Illustration of 10 by 10 by 2 VFG matrix in Maxwell 3D using finite radius conductor models. This 
configuration was determined as the optimal design to enable production of both the Normal Field and Parallel 

Field requirements of the MPAD test case.

 


